A note on maximal operators related to Laplace-Bessel differential operators on variable exponent Lebesgue spaces

نویسندگان

چکیده

Abstract In this paper, we consider the maximal operator related to Laplace-Bessel differential ( B B -maximal operator) on L p ( ⋅ ) , γ R k + n {L}_{p\left(\cdot ),\gamma }\left({{\mathbb{R}}}_{k,+}^{n}) variable exponent Lebesgue spaces. We will give a necessary condition for boundedness of Moreover, obtain that is not bounded spaces in case − = 1 {p}_{-}=1 . also prove fractional function associated with (fractional function)

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Littlewood-Paley Operators on Morrey Spaces with Variable Exponent

By applying the vector-valued inequalities for the Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, the boundedness of the Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g μ *-functions, and their commutators generated by BMO functions, is obtained on the Morrey spaces with variable exponent.

متن کامل

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Mathematics

سال: 2021

ISSN: ['2391-5455']

DOI: https://doi.org/10.1515/math-2021-0041